Expression of aquaporin-4 and pathological characteristics of brain injury in a rat model of traumatic brain injury
نویسندگان
چکیده
Aquaporin 4 (AQP4) is a widely distributed membrane protein, which is found in glial cells, ependymocytes and capillary endothelial cells in the brain, and particularly in the choroid plexus. AQP4 is a key regulator of water metabolism, and changes in its expression following brain injury are associated with pathological changes in the damaged side of the brain; however, the effects of brain injury on AQP4 and injury‑induced pathological changes in the contralateral non‑damaged side of the brain remain to be fully elucidated. In the present study, male Sprague‑Dawley rats were subjected to traumatic brain injury (TBI) and changes in brain water content, the expression of AQP4 expression and pathological characteristics in the damaged and contralateral non‑damaged sides of the brain were examined. In the damaged side of the brain, vasogenic edema appeared first, followed by cellular edema. The aggravated cellular edema in the damaged side of the brain resulted in two periods of peak edema severity. Pathological changes in the contralateral non‑damaged side of the brain occurred later than those in the damaged side; cellular edema appeared first, followed by vasogenic edema, which was alleviated earlier than the cellular edema. AQP4 was downregulated during vasogenic edema, and upregulated during cellular edema. Taken together, these results suggested that the downregulation of AQP4 was a result of vasogenic edema and that the upregulation of AQP4 may have induced cellular edema.
منابع مشابه
Interaction of aquaporin 4 and N-methyl-D-aspartate NMDA receptor 1 in traumatic brain injury of rats
Objective(s): -methyl-D-aspartate NMDA receptor (NMDAR) and aquaporin 4 (AQP4) are involved in the molecular cascade of edema after traumatic brain injury (TBI) and are potential targets of studies in pharmacology and medicine. However, their association and interactions are still unknown.Materials and Methods: We established a rat TBI model in this study. The cellular distribution patterns of ...
متن کاملRole of melatonin receptors in the effect of estrogen on brain edema, intracranial pressure and expression of aquaporin 4 after traumatic brain injury
Objective(s): Traumatic brain injury (TBI) is one of the most common causes of death and disability in modern societies. The role of steroids and melatonin is recognized as a neuroprotective factor in traumatic injuries. This study examined the role of melatonin receptors in the neuroprotective effects of estrogen. Materials and Methods: Seventy female ovariectomized Wistar rats were divided in...
متن کاملاکواپورین 4 و نقش محافظتی استروئیدهای جنسی بر آسیب مغزی ناشی از تروما در موش صحرایی ماده
Background and Objectives: The brain damage caused by trauma is the most common cause of death. The neuroprotection effects of estrogen and progesterone have been reported in numerous studies. In the present study, the role of different doses of sex steroids has been investigated on the aquaporin 4 protein concentration changes in brain tissue of ovariectomized (OVX) rats after traumatic brain ...
متن کاملThe Effects of Estrogen Receptors' Antagonist on Brain Edema, Intracranial Pressure and Neurological Outcomes after Traumatic Brain Injury in Rat
Background: In previous studies, the neuroprotective effect of 17&beta-estradiol in diffuse traumatic brain injury has been shown. This study used ICI 182,780, a non-selective estrogen receptor antagonist, to test the hypothesis that the neuroprotective effect of 17&beta-estradiol in traumatic brain injury is mediated by the estrogen receptors. Methods: The ovariectomized rats were divided into...
متن کاملNeuroprotective effects of gallic acid in a rat model of traumatic brain injury: behavioral, electrophysiological and molecular studies
Objective(s): Traumatic brain injury (TBI) is one of the main causes of intellectual and cognitive disabilities. Clinically, it is essential to limit the development of cognitive impairment after TBI. In the present study, the neuroprotective effects of gallic acid (GA) on neurological score, memory, long-term potentiation (LTP) from hippocampal dentate gyrus (hDG), brain lipid peroxidation an...
متن کامل